Du bon usage de la formule de Stefan-Boltzmann

La formule de Stefan-Boltzmann est l’outil de travail des climatologues qui veulent prédire des variations de température à partir des flux énergétiques intervenant dans le bilan énergétique de la Terre ( voir  ici ). Sous la forme  utilisée, elle lie le flux unidirectionnel  F rayonné (vers la Terre ou vers l’espace) à la température T (en K)  à la puissance  4 (σ = constante de Stefan = 5,67 x 10-8 W m-2 K-4) :

F (W m-2)  = σ T4          (1)

Rappel théorique

La formule de Stefan-Boltzmann est dérivée de la théorie du « corps noir » élaborée par plusieurs physiciens dans la seconde moitié du 19ème siècle pour établir un lien entre le flux de rayonnement émis par tout solide à une température supérieure  au zéro absolu  et la température de ce solide. La meilleure représentation qu’on puisse se faire du modèle sur lequel est basée cette théorie est celle d’un four sous vide et à l’équilibre thermique dont la paroi  interne opaque absorbe, sans  aucune réflexion ni transmission, tout rayonnement électromagnétique quelle que soit sa longueur d’onde. A l’équilibre thermique elle doit également réémettre tout rayonnement absorbé. Ce four parfaitement isolé devrait cependant être percé d’un minuscule orifice permettant d’analyser le rayonnement concentré à l’intérieur. Aucune interprétation quantitative du spectre observé ne fut possible dans le cadre de la théorie électromagnétique classique et c’est finalement Planck qui proposa en 1900 une équation introduisant l’idée, révolutionnaire pour l’époque, qu’à chaque longueur d’onde le rayonnement ne peut être émis que sous forme de « quanta » (c’est-à-dire de petits paquets) dont l’énergie est hν = hc/λ (où ν et λ sont respectivement la fréquence et la longueur d’onde du rayonnement, c la vitesse de la lumière et h une nouvelle constante de la nature appelée désormais constante de Planck). Ce rayonnement qualifié de « thermique » est dû à l’oscillation de dipôles électriques formés par le noyau et le nuage électronique des atomes qui, en accord avec les lois de  l’électromagnétisme, émettent un rayonnement de fréquence égale à la fréquence d’oscillation.

L’équation de Planck (mentionnée sur la fig. 1) permet de calculer à différentes températures l’émittance monochromatique hémisphérique E(λ, T) en W m-2 c’est-à-dire  le flux par unité de surface émis à chaque longueur d’onde dans toutes les directions à partir d’une surface plane. Les courbes obtenues sont présentées sur la fig. 1.  Elles sont indépendantes de  la nature du corps.

Fig. 1 Equation de Planck donnant E (λ, T) en fonction de la longueur d’onde (en nm)

L’intégration de l’équation de Planck sur tout le domaine de longueurs d’onde conduit à la formule de Stefan-Boltzmann qui lie l’émittance hémisphérique totale E(T)  (en W m-2) à la température T (en K)  à la puissance  4 (σ = constante de Stefan) :

E (T)(W m-2) = σ T4                       (2)

La relation (2) fournit une mesure de l’aire sous les courbes de la fig. 1. Il faut remarquer que l’émittance énergétique hémisphérique E(T) intervenant dans la relation (2) est physiquement différente du flux unidirectionnel F de la relation (1). Cette dernière, couramment utilisée en climatologie, peut être considérée comme une approximation  à usage pratique. La fig. 1 montre aussi que le maximum de la courbe d’émission  se déplace avec la température selon la loi de Wien :

λmax = C / T (C = 2,9 10-3 m K).

Limitations pratiques

L’application de l’équation de Planck et de la formule de Stefan-Boltzmann à des substances réelles bien différentes du modèle théorique implique certaines limitations.

1° En présence d’un autre corps à une température supérieure au zéro absolu, émettant donc aussi un rayonnement thermique,  l’échange énergétique radiatif obéira à la relation :

F (W m-2)  =  σ (Tc4 – Tf4)

 Dans cette formule Tc et Tf sont respectivement les températures des corps chaud et froid impliqués dans l’échange énergétique (le symbole F correspond toujours à un flux unidirectionnel comme il est d’usage  en climatologie). Le rayonnement émis par un corps froid ne peut donc pas être absorbé par un corps chaud. A  titre d’exemple, on remarque sur la fig. 1 que toutes les longueurs d’onde émises par un corps à 3000 K sont déjà émises par un corps à 4000 K. Elles ne pourront donc être absorbées pour exciter l’oscillation de nouveaux dipôles dans ce corps plus chaud.

2° En toute rigueur l’équation de Planck et la formule de Stefan-Boltzmann ne peuvent être utilisées que si le rayonnement thermique est le seul mécanisme d’échange énergétique. Elle ne peut donc s’appliquer à la Terre où la convection de l’air et l’évaporation de l’eau des océans contribuent de manière prépondérante au bilan énergétique ( voir la fig. 1 ici ). Si les satellites détectent au sommet de l’atmosphère  l’émission sous forme de rayonnement de 240 W m-2 on ne peut en déduire, par application de la formule (1), que la surface terrestre devrait être à la température de 255 K (-18°C). De même, le fait que la température « globale moyenne » de la Terre soit 288 K (15°C) ne permet pas d’en déduire que le flux radiatif émis par la Terre serait de  390 W m-2

3° Dans la pratique, la surface d’un corps réel ne se comporte pas comme celle d’un corps noir notamment car une partie du flux incident est réfléchie. On définit alors l’émissivité ε d’un corps quelconque comme le rapport entre le flux d’énergie radiative émis par ce corps et le flux d’énergie radiative qui serait émis par un corps noir à la même température. Pour un corps noir ε = 1 et pour un corps réel ε < 1. On qualifie ces corps de « gris » si l’équilibre thermique est néanmoins maintenu à toutes les longueurs d’onde ce qui implique que le flux émis reste égal au flux absorbé. L’absorptivité α d’un corps « gris » (définie de manière analogue à son émissivité) doit donc toujours être égale à son émissivité : α = ε (loi du rayonnement de Kirchhoff). Si α  ≠  ε le corps n’est ni gris, ni noir et est hors d’équilibre thermique. Dans le cas d’un corps « gris » la formule de Stefan-Boltzmann devrait s’écrire :

F (W m-2)  = ε σ T4                                   (3)

A une même température le flux radiatif émis par un corps gris sera moindre que celui émis par un corps noir. Les courbes de Planck seront semblables à celles de la fig. 1 mais les intensités émises seront plus faibles.

4° D’une manière générale, lorsque la surface d’un corps est soumise à un rayonnement incident, une fraction ρ (réflectivité) de  l’énergie incidente est réfléchie, une fraction α (absorptivité) est absorbée et une fraction τ (transmissivité) est transmise (fig. 2). L’importance de ces différentes fractions dépend de la longueur d’onde et de la température mais la conservation de l’énergie implique toujours que :   ρ + α + τ  =   1. Dans le cas d’un corps noir ou gris τ = 0  d’où  α = 1 – ρ.  De plus, α = ε d’après la loi du rayonnement de Kirchhoff. Dans l’un et l’autre cas la formule de Stefan -Boltzmann peut être utilisée sous la forme (1) ou (3) mais elle n’est pas valable si τ ≠  0.

Fig. 2 Interactions d’un rayonnement incident avec une surface

Dans le bilan énergétique de la Terre proposé par la NASA (voir la fig.1 ici) 4 % du flux radiatif d’origine solaire sont réfléchis par la surface terrestre (ρ = 0,04). L’absorptivité moyenne de la Terre serait donc α = 0,96. La Terre pourrait être considérée comme un corps gris si ce n’est que 71 % de sa surface sont occupés par des mers ou des océans. Or, l’eau est pratiquement transparente dans le domaine le plus intense du rayonnement solaire (400 nm à 1 µm) où son coefficient d’absorption est très faible (fig. 3). Comme τ ≠  0 dans ce domaine de longueurs d’onde elle ne peut être considérée comme un corps gris et la formule de Stefan-Boltzmann n’est pas applicable.

Fig. 3 Spectre d’absorption de l’eau

Néanmoins, pour estimer la température de surface des océans, des mesures du rayonnement émis ont été faites par satellite dans la fenêtre de transparence atmosphérique de 8 à 13 µm (voir la fig. 2 ici ) où le coefficient d’absorption de l’eau est beaucoup plus élevé (fig. 3). Dans cet intervalle de longueurs d’onde la pénétration du rayonnement solaire est limitée à quelques µm de la surface et τ = 0. La formule de Stefan-Boltzmann a alors été utilisée pour déterminer la température de surface de la mer et des océans dans différentes régions du globe. Il ne faut cependant pas oublier (voir rappel théorique) que la formule de Stefan-Boltzmann est obtenue par intégration de l’équation de Planck sur tout le domaine de longueurs d’onde rayonné et que relation en T à la puissance 4 n’est valable que dans ces conditions. L’application à la mesure de la température de surface des océans dans un domaine très limité de longueurs d’onde constitue donc une approximation.

5° Les basses couches atmosphériques ne peuvent jouer le rôle de corps noir car elles n’en présentent aucune des caractéristiques spécifiques. Elles n’ont pas de surface, les transferts énergétiques n’y sont pas exclusivement radiatifs et elles n’absorbent ni émettent toutes les longueurs d’onde puisque les constituants atmosphériques présentent un spectre de raies en absorption comme en émission.

 

 

 

 

(Visited 58 times, 1 visits today)

Une réflexion au sujet de « Du bon usage de la formule de Stefan-Boltzmann »

  1. Merci pour cet excellent article. La formule de Stefan-Boltzmann est malheureusement employée par les climatologues…et le premier à l’avoir employée est le chimiste et prix Nobel Svante Arrhenius!

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *